The high resolution data has about 500 MB per file, which when read in over a remote source can lead to long wait times.
To reduce the wait times the data can be read in lazily using dask.
Intake will this do this by default.
Let’s obtain the EUREC4A intake catalog:
The LIMRAD94 cloud radar offers multiple products which can be accessed using names and additional parameters.
Let’s see which products and parameters are available for the cloud radar.
For the parameters, we are also interested in their valid range:
/usr/share/miniconda3/envs/how_to_eurec4a/lib/python3.12/site-packages/intake_xarray/base.py:21: FutureWarning: The return type of `Dataset.dims` will be changed to return a set of dimension names in future, in order to be more consistent with `DataArray.dims`. To access a mapping from dimension names to lengths, please use `Dataset.sizes`.
'dims': dict(self._ds.dims),
Calibrated reflectivity. Calibration convention: in the absence of attenuation, a cloud at 273 K containing one million 100-micron droplets per cubic metre will have a reflectivity of 0 dBZ at all frequencies.
long_name :
Radar reflectivity factor
plot_range :
[-60, 20]
plot_scale :
linear
units :
dBZ
Array
Chunk
Bytes
62.23 MiB
0.97 MiB
Shape
(44447, 367)
(5556, 46)
Dask graph
64 chunks in 2 graph layers
Data type
float32 numpy.ndarray
altitude
()
float32
...
long_name :
Height of instrument above mean sea level
units :
m
[1 values with dtype=float32]
bt
(time)
float32
dask.array<chunksize=(44447,), meta=np.ndarray>
long_name :
Direct detection brightness temperature at 89 GHz
units :
K
Array
Chunk
Bytes
173.62 kiB
173.62 kiB
Shape
(44447,)
(44447,)
Dask graph
1 chunks in 2 graph layers
Data type
float32 numpy.ndarray
frequency
()
float32
...
long_name :
Radar frequency
units :
GHz
[1 values with dtype=float32]
heave_cor
(time, range)
float32
dask.array<chunksize=(5556, 46), meta=np.ndarray>
comment :
This is the velocity by which the original Doppler spectrum was corrected by. The heave rate is subtracted from the Doppler velocity, meaning the spectra is shifted to the left for positive heave rates and to the right for negative heave rates.
long_name :
Heave rate correction
plot_range :
[-7, 7]
plot_scale :
linear
unit_html :
m s<sup>-1</sup>
units :
m s-1
Array
Chunk
Bytes
62.23 MiB
0.97 MiB
Shape
(44447, 367)
(5556, 46)
Dask graph
64 chunks in 2 graph layers
Data type
float32 numpy.ndarray
heave_cor_bins
(time, range)
float64
dask.array<chunksize=(5556, 46), meta=np.ndarray>
comment :
This is the number of bins by which the original Doppler spectrum was shifted by. Positive values shift the spectrum to the left, while negative values shift the spectrum to the right.
long_name :
Heave rate correction in Doppler spectra bins
plot_scale :
linear
units :
1
Array
Chunk
Bytes
124.45 MiB
1.95 MiB
Shape
(44447, 367)
(5556, 46)
Dask graph
64 chunks in 2 graph layers
Data type
float64 numpy.ndarray
kurt
(time, range)
float32
dask.array<chunksize=(5556, 46), meta=np.ndarray>
long_name :
Kurtosis
plot_range :
[0, 3]
units :
1
Array
Chunk
Bytes
62.23 MiB
0.97 MiB
Shape
(44447, 367)
(5556, 46)
Dask graph
64 chunks in 2 graph layers
Data type
float32 numpy.ndarray
latitude
(time)
float32
dask.array<chunksize=(44447,), meta=np.ndarray>
long_name :
Latitude
units :
degrees_north
Array
Chunk
Bytes
173.62 kiB
173.62 kiB
Shape
(44447,)
(44447,)
Dask graph
1 chunks in 2 graph layers
Data type
float32 numpy.ndarray
ldr
(time, range)
float32
dask.array<chunksize=(5556, 46), meta=np.ndarray>
comment :
This parameter is the ratio of cross-polar to co-polar reflectivity.
long_name :
Linear depolarisation ratio
plot_range :
[-30.0, 0.0]
units :
dB
Array
Chunk
Bytes
62.23 MiB
0.97 MiB
Shape
(44447, 367)
(5556, 46)
Dask graph
64 chunks in 2 graph layers
Data type
float32 numpy.ndarray
longitude
(time)
float32
dask.array<chunksize=(44447,), meta=np.ndarray>
long_name :
Longitude
units :
degrees_east
Array
Chunk
Bytes
173.62 kiB
173.62 kiB
Shape
(44447,)
(44447,)
Dask graph
1 chunks in 2 graph layers
Data type
float32 numpy.ndarray
lwp
(time)
float32
dask.array<chunksize=(44447,), meta=np.ndarray>
long_name :
Liquid water path
units :
g m-2
Array
Chunk
Bytes
173.62 kiB
173.62 kiB
Shape
(44447,)
(44447,)
Dask graph
1 chunks in 2 graph layers
Data type
float32 numpy.ndarray
rain
(time)
float32
dask.array<chunksize=(44447,), meta=np.ndarray>
long_name :
Rain rate from weather station
units :
mm h-1
Array
Chunk
Bytes
173.62 kiB
173.62 kiB
Shape
(44447,)
(44447,)
Dask graph
1 chunks in 2 graph layers
Data type
float32 numpy.ndarray
range_offsets
(chirp)
float64
dask.array<chunksize=(3,), meta=np.ndarray>
long_name :
chirp sequences start index array in altitude layer array
units :
1
Array
Chunk
Bytes
24 B
24 B
Shape
(3,)
(3,)
Dask graph
1 chunks in 2 graph layers
Data type
float64 numpy.ndarray
time_shift
(time, chirp)
float32
dask.array<chunksize=(22224, 3), meta=np.ndarray>
long_name :
Time shift between radar and ship calculated for each hour and chirp
units :
s
Array
Chunk
Bytes
520.86 kiB
260.44 kiB
Shape
(44447, 3)
(22224, 3)
Dask graph
2 chunks in 2 graph layers
Data type
float32 numpy.ndarray
v
(time, range)
float32
dask.array<chunksize=(5556, 46), meta=np.ndarray>
comment :
This parameter is the radial component of the velocity, with positive velocities are away from the radar (i.e. up) and negative velocities moving towards the radar (i.e. down). It was corrected for the ships heave motion. A rolling average over 3 time steps has been applied to it.
folding_velocity :
7.261648654937744
long_name :
Best estimate of averaged mean Doppler velocity
plot_range :
[-7, 7]
plot_scale :
linear
unit_html :
m s<sup>-1</sup>
units :
m s-1
Array
Chunk
Bytes
62.23 MiB
0.97 MiB
Shape
(44447, 367)
(5556, 46)
Dask graph
64 chunks in 2 graph layers
Data type
float32 numpy.ndarray
v_no_rolling_mean_applied
(time, range)
float32
dask.array<chunksize=(5556, 46), meta=np.ndarray>
comment :
This parameter is the radial component of the velocity, with positive velocities are away from the radar (i.e. up) and negative velocities moving towards the radar (i.e. down). It was corrected for the ships heave motion but no rolling mean was applied.
folding_velocity :
7.261648654937744
long_name :
Heave corrected mean Doppler velocity
plot_range :
[-7, 7]
plot_scale :
linear
unit_html :
m s<sup>-1</sup>
units :
m s-1
Array
Chunk
Bytes
62.23 MiB
0.97 MiB
Shape
(44447, 367)
(5556, 46)
Dask graph
64 chunks in 2 graph layers
Data type
float32 numpy.ndarray
v_uncor
(time, range)
float32
dask.array<chunksize=(5556, 46), meta=np.ndarray>
comment :
This parameter is the uncorrected radial component of the velocity, with positive velocities are away from the radar (i.e. up) and negative velocities moving towards the radar (i.e. down).
folding_velocity :
7.261648654937744
long_name :
Uncorrected Mean Doppler velocity
plot_range :
[-7.0, 7.0]
plot_scale :
linear
unit_html :
m s<sup>-1</sup>
units :
m s-1
Array
Chunk
Bytes
62.23 MiB
0.97 MiB
Shape
(44447, 367)
(5556, 46)
Dask graph
64 chunks in 2 graph layers
Data type
float32 numpy.ndarray
width
(time, range)
float32
dask.array<chunksize=(5556, 46), meta=np.ndarray>
comment :
This parameter is the standard deviation of the reflectivity-weighted velocities in the radar pulse volume.
remove Precip. ghost: False
, remove curtain ghost: True
despeckle: True
, number of standard deviations above noise: 6.0
spectra heave corrected: True
spectra heave corrected with version: ca
spectra dealiased: True
campaign_id :
EUREC4A
contact :
heike.kalesse@uni-leipzig.de
day :
1
description :
Concatenated data files of LIMRAD 94GHz - FMCW Radar, filters applied: ghost-echo, despeckle, use only main peak,
spectra corrected for heave motion of ship and then dealiased
history :
Created Thu Feb 18 23:16:55 2021
institution :
Leipzig Institute for Meteorology (LIM), Leipzig, Germany
instrument_id :
LIMRAD94
location :
RV-Meteor
month :
2
platform_id :
Meteor
reference :
W Band Cloud Radar LIMRAD94
Documentation and User Manual provided by manufacturer RPG Radiometer Physics GmbH
Information about system also available at https://www.radiometer-physics.de/
source :
94 GHz Cloud Radar LIMRAD94
Radar type: Frequency Modulated Continuous Wave,
Transmitter power 1.5 W typical (solid state amplifier)
Antenna Type: Bi-static Cassegrain with 500 mm aperture
Beam width: 0.48deg FWHM
Variable names and dimensions prepared for upload to Aeris data center. 1.1: updated metadata
version_id :
v1.1
year :
2020
Explore the dataset and choose the variable you want to work with.
The variables are loaded lazily, i.e. only when their content is really required to complete the operation.
An example which forces the data to load is plotting, in this case only the radar reflectivity will be loaded.
%matplotlib inline
importmatplotlib.pyplotaspltimportpathlibplt.style.use(pathlib.Path("./mplstyle/book"))ds.Zh.plot(x='time',cmap="Spectral_r")# plot the variable with time as the x axisplt.ylim(0,3000);