How to work with flight phase segmentation files#

import datetime
import eurec4a
meta = eurec4a.get_flight_segments()
meta.keys()
dict_keys(['HALO', 'P3'])

1. map segment_ids to segments#

This can be useful for further queries based on specific segment properties. In addition to the original properties in each segment, the platform_id and flight_id are also stored.

segments = [{**s,
             "platform_id": platform_id,
             "flight_id": flight_id
            }
            for platform_id, flights in meta.items()
            for flight_id, flight in flights.items()
            for s in flight["segments"]
           ]
segments_by_segment_id = {s["segment_id"]: s for s in segments}

2. list flight_ids#

flight_ids = [flight_id
              for platform_id, flights in meta.items()
              for flight_id, flight in flights.items()
              ]
flight_ids
['HALO-0119',
 'HALO-0122',
 'HALO-0124',
 'HALO-0126',
 'HALO-0128',
 'HALO-0130',
 'HALO-0131',
 'HALO-0202',
 'HALO-0205',
 'HALO-0207',
 'HALO-0209',
 'HALO-0211',
 'HALO-0213',
 'HALO-0215',
 'HALO-0218',
 'P3-0117',
 'P3-0119',
 'P3-0123',
 'P3-0124',
 'P3-0131',
 'P3-0203',
 'P3-0204',
 'P3-0205',
 'P3-0209',
 'P3-0210',
 'P3-0211']

List flight_id for a specified day, here February 5

flight_id = [flight_id
             for platform_id, flights in meta.items()
             for flight_id, flight in flights.items()
             if flight["date"] == datetime.date(2020,2,5)
             ]
flight_id
['HALO-0205', 'P3-0205']

3. list flight segmentation kinds#

A segment is an object which includes at minimum a segment_id, name, start and end time.

kinds = set(k for s in segments for k in s["kinds"])
kinds
{'axbt',
 'baccardi_calibration',
 'circle',
 'circle_break',
 'circling',
 'cloud',
 'clover_leg',
 'clover_turn',
 'lidar_leg',
 'profile',
 'radar_calibration_tilted',
 'radar_calibration_wiggle',
 'straight_leg',
 'super_curtain',
 'transit'}

4. List of common properties in all segments#

set.intersection(*(set(s.keys()) for s in segments))
{'dropsondes',
 'end',
 'flight_id',
 'irregularities',
 'kinds',
 'name',
 'platform_id',
 'segment_id',
 'start'}
segment_ids_by_kind = {kind: [segment["segment_id"]
                              for segment in segments
                              if kind in segment["kinds"]]
    for kind in kinds
}

5. Further random examples:#

  • total number of all circles flown during EUREC⁴A / ATOMIC

len(segment_ids_by_kind["circle"])
89
  • How much time did HALO and P3 spend circling?

circling_time = sum([s["end"] - s["start"]
                     for s in segments
                     if "circling" in s["kinds"]
                    ], datetime.timedelta())
circling_time
datetime.timedelta(days=3, seconds=29188)
  • get segment_id for all circles on a given day sorted by the start time, here February 5

segments_ordered_by_start_time = list(sorted(segments, key=lambda s: s["start"]))
circles_Feb05 = [s["segment_id"]
                 for s in segments_ordered_by_start_time
                 if "circle" in s["kinds"]
                 and s["start"].date() == datetime.date(2020,2,5)
                 and s["platform_id"] == "HALO"
                ]
circles_Feb05
['HALO-0205_c1',
 'HALO-0205_c2',
 'HALO-0205_c3',
 'HALO-0205_c4',
 'HALO-0205_c5',
 'HALO-0205_c6']
  • select all dropsondes with the quality flag GOOD from the first circle on February 5.

circles_Feb05[0]
'HALO-0205_c1'
segments_by_segment_id[circles_Feb05[0]]["dropsondes"]["GOOD"]
['HALO-0205_s01',
 'HALO-0205_s02',
 'HALO-0205_s03',
 'HALO-0205_s04',
 'HALO-0205_s05',
 'HALO-0205_s06',
 'HALO-0205_s07',
 'HALO-0205_s08',
 'HALO-0205_s09',
 'HALO-0205_s10',
 'HALO-0205_s12']